中国古代科学史最大的疑案

作者

蔡天新来源

赛先生(ID:mrscience)何为真理?不能坐等答案。——弗朗西斯·培根01道古新桥杭州城内,离开西湖北岸的宝石山不远,有一条小路叫西溪路。在西溪路的东段,与杭大路的交叉口西侧(也在浙江大学西溪校区与玉泉校区之间,靠近西溪校区),有一座石桥,叫道古桥。始建于南宋嘉熙年间(-),初名西溪桥。南宋咸淳初年《临安志》有载:“‘西溪桥’,本府试院东,宋代嘉熙年间道古建造”。这个造桥的道古不是别人,正是南宋大数学家秦九韶,道古是他的字。道古桥在杭州的位置图(梁津铭绘)秦九韶(-)祖籍河南范县,该县位处鲁豫交界处,县城有数百年设在山东莘县境内,故他自称山东鲁郡人。秦九韶出生在四川普州(今成渝之间)安岳,并在那里长大。其父中过进士(据笔者了解,家乡人传秦家三代进士),曾任巴州(今川东北巴中)地方长官。年,巴州发生了一起兵变,促使其离开故乡,调任首都临安(杭州),全家住在西溪河畔。原来,年,临安发生了一场著名的大火,烧了三天三夜,烧掉太庙、三省、六部、御史台等,受灾居民达三万五千多家,部分朝廷命官及家眷便迁居当时属于郊外的西溪河畔,秦家来临安后也住那里。九韶自幼聪颖好学,兴趣广泛,他的父亲来临安后一度出任工部郎中,后任秘书少监,掌管图书,其下属机构设有太史局,这使他有机会博览群书,学习天文历法、土木工程和数学、诗词等。年,秦父又被任命为潼川(今四川三台)知府,该地靠近吐蕃部落,为边关重地。秦父决定把家眷安置在离开临安不远的湖州,只携带了心仪的小儿子九韶前往赴任。九韶曾出任擢郪县(今三台县郪江乡)县尉,故也有九韶为义兵首的说法,他有领兵打仗的才能。宋理宗赵昀,曾接见秦九韶,宠爱奸臣贾似道的贵妃姐姐。年,秦九韶也考中进士,先后在四川、湖北、安徽、江苏、江西、广东等地为官。年,元兵攻入四川,嘉陵江流域战乱频繁,在故乡为官的九韶不得不时常参与军事活动。在《数书九章》序言中,九韶也对这一段生活有所描述。年,秦九韶回临安丁父忧(后移居湖州,继续为父奔丧),见河上无桥,两岸人民往来很不便,便亲自设计,再通过朋友从府库得到银两资助,在西溪河上造了一座桥。桥建好后,原本没有名字,因桥建在西溪河上,习惯上被叫作“西溪桥”。直到元代初年,另一位大数学家、游历四方的北方人朱世杰(-)来到杭州,才倡议将“西溪桥”更名为“道古桥”,以纪念造桥人、他所敬仰的前辈数学家秦九韶,并亲自将桥名书镌桥头。网友提供的原道古桥(疑似)道古桥一直存在到新千年之交(笔者在附近居住了十九年,历史上有无重建不得而知),因为西溪路扩建改造,原先的桥和溪流被夷(填)为平地(曾经有过的道古桥居委会也随之消失),并建起高楼大厦,诸如国际商务中心、浙江省国土资源厅和黄龙世纪雅苑,只留一个公交车站名道古桥(据说还有地图上未显示的道古桥路)。年,道古桥附近天目山路(杭州东西主干道)南侧西溪支流沿山河上修建了一座人行石桥(在杭大路的马登桥和黄龙路的沿山河桥之间,离开道古桥原址约百米左右,比原先的长且宽阔)。我曾数度实地勘察,发现此桥跨河而建,两岸垂柳披挂,风景优美,且闹中取静,关键是尚未命名,故而引导我突发奇想。道古新桥。作者摄于杭州02数学大略年,秦九韶任建康府(南京)通判期间,因母丧离任,回浙江湖州守孝三年。正是在这次守孝期间,秦九韶专心研究数学,完成了二十多万字的巨著《数书九章》(年9月),名声大震加上他在天文历法方面的丰富知识和成就,曾受皇帝(宋理宗赵昀)召见。他在皇帝面前阐述自己的见解,并呈奏稿和“数术大略”或“数学大略”(即《数书九章》)。可以说,秦九韶是第一个受皇帝接见的中国数学家。几年以后,河北的数学家李冶也曾三度被忽必烈召见。《数书九章》线装版封面(吴文俊作序)《数书九章》分九类十八卷,每类九个问题,应该说全面超越了古典名著《九章算术》。其中,最重要的成果无疑要数第一卷大衍类的“大衍总数术”和第九卷“市易类”的“正负开方术”。“开方正负术”或“秦九韶算法”给出了一般n次代数方程正根的解法,系数可正可负。此类方程求解需要迭代运算,那样需要反复求取该多项式的值,而每次求值原本需经n(n+1)/2次乘法和n次加法。秦九韶将其转化为n个一次式的求解,只需n次乘法和n次加法,他并给出了最高10次21个方程的例子。直到19世纪初,这一算法才被英国数学家霍纳发现,称霍纳算法,即便在计算机时代的今天,秦九韶(霍纳)算法仍有重要的意义。“大衍总数术”给出了孙子定理的一般表述。大约在公元四、五世纪成书的《孙子算经》里有所谓的“物不知数”问题。即“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”“答曰二十三”。换句话说,孙子只是给出了一个特殊例子。而在江苏淮安的民间传说里,这个故事可溯源到公元前二、三世纪西汉名将韩信点兵的故事。话说秦朝末年,楚汉相争。一次,韩信率兵与楚军交战。苦战一场,汉军死伤数百,遂整顿兵马返回大本营。当行至一处山坡,忽报楚军骑兵追来。只见远方尘土飞扬,杀声震天。此时汉军已十分疲惫,韩信令士兵3人一排,结果多出2名;接着令5人一排,结果多出3名;再令士兵7人一排,又多出2名。韩信当即宣布:我军名勇士,敌人不足五百。果然士气大振,一举击败了楚军。用现代数学语言来描述“大衍总数术”就是:设有k个两两互素的大于1的正整数,其乘积为M,则对任意k个整数,存在唯一不超过M的正整数x,x被各个相除所得余数依次为。秦九韶并给出了求解的过程,为此他发明了“辗转相除法”(欧几里得算法)和“求一术”。后者是指,设a和m是互素的正整数,m大于1,可以求得唯一不超过m的正整数x,使得a和x的乘积被m除后余数为1。遗憾的是,由于古代中国没有素数的概念(要到清朝康熙年间才有,叫数根),且当时的用途并非在理论上,而主要用于解决历法、工程、赋役和军旅等实际问题,秦九韶对他发现的定理没有给出严格的证明。但对求解型的定理来说,这个并不十分重要。实际上,他还允许模不两两互素,并给出了可靠的计算程序将其化为两两互素的情形。值得一提的是,大衍求一术和欧拉定理是20世纪密码学中赫赫有名的“RSA公钥体系”中的两个关键因素。此外,秦九韶还给出了“三斜求积术”,此乃著名的海伦公式(已知三角形的三条边长求面积)的等价形式。在第二章天时类,秦九韶给出了历法推算和雨雪量的计算。在南京北极阁气象博物馆里,有古代著名气象学家的雕像,其中也有秦九韶,雕像的石碑上写着:他用“平地得雨之数”(即单位面积内得雨)量度雨水,在世界上最早为雨量和雪量测定奠定了科学理论依据。03享誉欧洲年,数学王子高斯的名著《算术研究》(第2篇第7节)里,也给出了上述“大衍求一术”,此前瑞士数学家欧拉已作了深入研究,但他们都不知道中国的数学家早已经有这个结果。直到年,秦九韶的结果和方法被英国传教士伟烈亚力(与清代数学家李善兰合作译完欧几里得《几何原本》)译介到欧洲,他的论文《中国科学史札记》在欧洲学术界受到广泛


转载请注明:http://www.180woai.com/afhzz/508.html


冀ICP备2021022604号-10

当前时间: